LaRC-IA—"Improved adhesive" offers processes and chemistries to lower the cost of high-performance polyimide adhesives, coatings, and films. NASA's intellectual property (IP) for this family is tailorable across various chemistries and applications. **LaRC-SI**—"Soluble imide" is a unique copolymer that is soluble in the imide form and thus enables solvent coating and layered buildup. LaRC-PETI—Includes both processes and chemistries to improve the processability of polyimide parts made of high-temperature matrix resins that can be used for very long-life applications. LaRC-BP—"Branched polymers" enable improved processability and higher-temperature applications; these chemistries afford excellent melt flow at 15 psi for ultra-high-temperature applications. **LaRC-RP**—Polyimide thermoset family exhibiting operating temperatures from -150°F to 625°F with ability to withstand spikes to 1500°F. ## NASA Offers Advanced Polymers for Application in Industry Advanced Polymer technologies developed by NASA Langley Research Center are available for creating high-performance parts, coatings, films, and adhesives. NASA Langley Research Center (LaRC) has a long history of research and development of high-performance materials for NASA's aeronautics and aerospace missions. NASA has invested in the development of various polymer chemistries and processing improvements. All of these materials have excellent toughness and solvent resistance. NASA has numerous families of advanced polymers patents available for license. Consider the benefits these technologies offer your applications. | Table 1: Technology Comparison | | | | | | | | | |--------------------------------|-------------------------|-----------------|-----|------|--------------|-----|--|--| | Applications | | IA | SI | PETI | BP | RP | | | | ADHESIVE | hot melt | +++ | + | +++ | +++ | + | | | | | self-adhesive | + | +++ | | | + | | | | | solution coating | + | +++ | + | + | +++ | | | | COATINGS | abrasion-resistant | +++ | +++ | +++ | +++ | +++ | | | | | conductive ⁱ | + | + | + | + | + | | | | | electrostatic | | | +++ | +++ | +++ | | | | | moisture-resistant | +++ | +++ | +++ | +++ | +++ | | | | | optical | + | + | | | + | | | | | powder processing | + | + | +++ | +++ | +++ | | | | | radiation shielding | +++ | +++ | +++ | +++ | +++ | | | | COMPOSITES | complex parts | | | +++ | +++ | +++ | | | | | simple parts | +++ | +++ | +++ | +++ | +++ | | | | | matrix resin | + | | +++ | +++ | +++ | | | | | processing-VARTM | | | +++ | + | + | | | | FILMS | adhesive | +++ | +++ | | | | | | | | large area | +++ | +++ | | | | | | | | other | +++ | +++ | + | | | | | | FOAM | various forms | +++ | +++ | + | + | + | | | | When filled with conductor | | +++ Best Choice | | | + Applicable | | | | Table 2 offers greater insights into properties and applications. | Table 2: Specific Properties | | | | | | | | | | | |--|---|---|--|---|--|--|--|--|--|--| | | LaRC-IA | LaRC-SI | LaRC-PETI | LaRC-BP | LaRC-RP | | | | | | | Glass Transition
Temperature | 230-250°C | 250°C | 250-280°C | 200-325°C | 230-393°C | | | | | | | Physical Chemistry thermoplastic with no crosslinking results in extreme flexibility, and reprocessability | | | thermosets that by vary
between reactive end grou
cross-link density—am
controls use to | thermoset that can be
cross-linked to varied
degrees with several
backbone structures | | | | | | | | Modulus | Hi | gh | Tailora | High | | | | | | | | Processing | melt/compression
moldable | can be solution cast
and sprayed as either
a polyamic acid or
polyimide because
remains soluble in
imidized form; can
be layered; melt
processable via
injection, extrusion, and
compression molding | low-pressure proc
long-term melt stabilit
start with low molecula
but finished part has
weight, can be powde
processing (post mel | liquid form for prepreg
of carbon, glass, or
quartz fabric; powder for
compression molding | | | | | | | | Various
Properties | 3000 psi adhesive
strength hot melt or
solution coating | excellent adhesion
to copper, aluminum,
titanium, and ceramics;
solution and melt forms | able to make complex
shapes, Ti-Ti, composite
bonding | reactive adhesive
system, able to make
very complex shapes | low moisture absorption,
good thermal oxidative
stability and resistance
to microcracking | | | | | | | Coatings | from solution | abrasion-resistant/
protective—on Nomex
cloth for conveyor belts
in drying ovens, EMI
and radiation shielding,
optical coatings,
conductive coatings | can be sprayed, painted, or dipped with melt processing | | from solution, can be painted or dipped—melt processing of partially reacted foam is possible | | | | | | | Aeronautics/
Aerospace | | specialty applications | high-temperature parts, including engines, supersonic fuselage, structural heat shields, etc. | | | | | | | | | Auto/Trucks/
Farming
Equipment | matrix resin, adhesive,
or molding with self- | moisture-resistant
materials | "under the hood" in high-temperature environments | | | | | | | | | Electronics | adhesive potential with resistance heating | multi-layer printed circuit
boards with increased
shear strength and
durability at elevated
temperatures | complete parts, includ
other mo | high-temp circuit boards | | | | | | | | Products
Using NASA
Technology | specialty high-
temperature foam—e.g.,
shipboard insulation | piezoelectric actuators,
insulation on implantable
medical electrical leads | aircraft, including mil | randomes, engine vanes,
exhaust ducts,
high-temp bearings | | | | | | | | Representative US Patents | 5,478,916 5,502,127 | 5,741,883 6,048,959 | 5,664,022 6,133,401
6,288,209 | 5,965,687 6,191,252 | 6,777,525 5,171,822 | | | | | | For More Information If your company is interested in licensing or joint development opportunities associated with this technology, or if you would like additional information on partnering with NASA, please contact: The Technology Gateway National Aeronautics and Space Administration ## **Langley Research Center** Mail Stop 218 Hampton, VA 23681 757.864.1178 LARC-DL-technologygateway@mail.nasa.gov technologygateway.nasa.gov